Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats
نویسندگان
چکیده
BACKGROUND This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. METHODS 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. RESULTS Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. CONCLUSIONS Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.
منابع مشابه
Suppressive effects of iron overloading on vascular calcification in uremic rats
BACKGROUND Medial vascular calcification is a specific complication in chronic kidney disease (CKD) patients although its pathogenesis is poorly understood. The administration of iron (Fe), generally used for the treatment of anemia in CKD patients, induces oxidative stress. Fe loading possibly affects the progress of vascular calcification in uremia. We investigated the effect of Fe on vascula...
متن کاملNicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification.
Evidences suggest that the presence of chronic kidney disease (CKD) is associated with cerebrovascular diseases related cognitive decline in dialysis patients. As mitochondrial dysfunction is implicated in neurodegenerative disorders, we hypothesized that changes in brain mitochondria occur due to vascular calcification induced by renal failure and the opening of the mitochondrial potassium cha...
متن کاملSpironolactone ameliorates arterial medial calcification in uremic rats: the role of mineralocorticoid receptor signaling in vascular calcification.
Vascular calcification (VC) is a critical complication in patients with chronic kidney disease (CKD). The effects of spironolactone (SPL), a mineralocorticoid receptor (MR) antagonist, on VC have not been fully investigated in CKD. The present in vivo study determined the protective effects of SPL on VC in CKD rats. Rats were divided into a control group and four groups of rats with adenine-ind...
متن کاملAdequate phosphate binding with lanthanum carbonate attenuates arterial calcification in chronic renal failure rats.
BACKGROUND Hyperphosphataemia is a risk factor for arterial calcification contributing to the high cardiovascular mortality in patients with chronic kidney disease. Calcium-based phosphate binders can induce hypercalcaemia and are associated with progression of vascular calcification. Therefore, the effect of lanthanum carbonate, a non-calcium phosphate binder, on the development of vascular ca...
متن کاملOverexpression of c1q/tumor necrosis factor-related protein-3 promotes phosphate-induced vascular smooth muscle cell calcification both in vivo and in vitro.
OBJECTIVE Vascular calcification is highly correlated with increased cardiovascular morbidity and mortality. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine that plays important roles in cardiovascular system. Here, we investigated the role of CTRP3 in vascular calcification and its underlying mechanism. APPROACH AND RESULTS Adenine-induced chronic renal fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017